Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants.
نویسندگان
چکیده
Effects of varying light intensity and nitrogen nutrition on photosynthetic physiology and biochemistry were examined in the sun plant Phaseolus vulgaris (common bean) and in the shade plant Alocasia macrorrhiza (Australian rainforest floor species). In both Phaseolus and Alocasia, the differing growth regimes produced large changes in photosynthetic capacity and composition of the photosynthetic apparatus. CO(2)-saturated rates of photosynthesis were linearly related to leaf nitrogen (N) content in both species but photosynthesis per unit leaf N was markedly higher for Phaseolus than for Alocasia. Photosynthetic capacity was also higher in Phaseolus per unit ribulose 1,5-bisphosphate (RuBP) carboxylase (RuBPCase) protein. The leaf content of RuBPCase was linearly dependent on leaf N content in the two species. However, the proportion of leaf N which was RuBPCase was greater in Phaseolus than in Alocasia and was more sensitive to growth conditions, ranging from 6% of leaf N at low light to 20% at high light. In Alocasia, this range was much less, 6 to 11%. However, chlorophyll content was much more sensitive to light intensity in Alocasia. Thus, the RuBPCase/chlorophyll ratio was quite responsive to N availability and light intensity in both species (but for different reasons), ranging from 6 grams per gram for Phaseolus and 2 grams per gram for Alocasia at high leaf N and 1.5 gram per gram for Phaseolus and 0.5 gram per gram for Alocasia at low leaf N. These large changes in the proportions of components of the photosynthetic apparatus had marked effects on the sensitivity of these species to photoinhibition. These environmental effects also caused changes in the absolute levels of metabolites of the photosynthetic carbon reduction cycle. Concentrations of RuBP and P-glycerate were approximately 2-fold higher in high light-grown than low light-grown Phaseolus and Alocasia when expressed on a leaf area basis. However, if metabolite pool sizes are expressed on the basis of the RuBPCase catalytic site concentration, then they were little affected by the marked changes in leaf makeup. There appears to be fundamental differences between these species in the mechanism of sun-shade adaptation and N partitioning in the photosynthetic apparatus that result in significant differences in the N-use efficiency of photosynthesis between Phaseolus and Alocasia but similar RuBPCase:substrate:product ratios despite these differences.
منابع مشابه
Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations.
We examined the effects of elevated CO2 concentration ([CO2]) on leaf demography, late-season photosynthesis and leaf N resorption of overstory sweetgum (Liquidambar styraciflua L.) trees in the Duke Forest Free Air CO2 Enrichment (FACE) experiment. Sun and shade leaves were subdivided into early leaves (formed in the overwintering bud) and late leaves (formed during the growing season). Overal...
متن کاملبرهمکنش شکل نیتروژن و بیکربنات بر ویژگیهای شیمیایی و اکوفیزیولوژیک گیاه لوبیا سبز در سیستم هیدروپونیک
Due to alkalinity of most soil and water resources in Iran and consequently bicarbonate-induced high pH of plants’ growing medium and different effects of ammonium and nitrate on pH of plant growing medium, research about deleterious effects of factors like alkalinity and interactive effect of nitrogen with bicarbonate on chemical and ecophysiological characteristics of plants seems to be neces...
متن کاملSalinity stress constrains photosynthesis in Fraxinus ornus more when growing in partial shading than in full sunlight: consequences for the antioxidant defence system.
BACKGROUND AND AIMS A major challenge in plant ecophysiology is understanding the effects of multiple sub-optimal environmental conditions on plant performance. In most Mediterranean areas soil salinity builds up during the summer because of low availability of soil water coupled with hot temperatures. Although sunlight and soil salinity may strongly interact in determining a plant's performanc...
متن کاملPhotosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions.
Coffee is native to shady environments but often grows better and produces higher yields without shade, though at the expense of high fertilization inputs, particularly nitrogen (N). Potted plants were grown under full sunlight and shade (50%) conditions and were fertilized with nutrient solutions containing either 0 or 23 mM N. Measurements were made in southeastern Brazil during winter condit...
متن کاملInfluence of Light Regimes on Respiration, Activity of Alternative Respiratory Pathway and Carbohydrates Content in Mature Leaves of Ajuga Reptans L
Influence of different light regimes (plants grown in shade and in the sun) on respiration, activity of alternative respiratory pathway and carbohydrates content in mature leaves of Ajuga reptans L. was investigated. All experiments were carried out under natural conditions. Sun plants had higher respiration, activity of the alternative pathway and carbohydrates content compared to the shade pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 84 3 شماره
صفحات -
تاریخ انتشار 1987